论文标题
磺基阳离子在超导量子处理器上的地面和激发状态特性的量子化学模拟
Quantum chemistry simulation of ground- and excited-state properties of the sulfonium cation on a superconducting quantum processor
论文作者
论文摘要
相关电子结构的计算描述,尤其是多电子系统激发态的计算描述,是量子设备的预期应用。一个重要的后果是确定光敏化化合物的光隔离实验中的主要分子碎片途径,例如基于磺基的光酸发电机。在这里,我们在IBM Falcon体系结构的超导量子处理器上模拟了H $ _3 $ s $^+$分子的静态和动态电子结构,以最小的模型。为此,我们概括了一种称为纠缠锻造或EF的量子减少技术[A. Eddins等人,物理学。 Rev. X Quantum,3,010309(2022)],目前仅限于对地面能量的评估,用于分子特性的处理。而在常规的量子模拟中,量子位代表旋转轨道,在ef a量子位置内代表空间轨道,将所需量子A的数量减少了一半。我们将广义EF与量子子空间扩展相结合[W. Colless等人,物理。 Rev. X 8,011021(2018)],该技术用于在子空间中的地面和激发状态投射时间无关的Schrodinger方程。为了实现这种算法工作流程的实验证明,我们部署了一系列错误减轻技术。我们计算沿地下和激发势能曲线的偶极子结构因子和部分原子电荷,从而揭示了同型和杂化片段化的发生。这项研究是迈向近期量子设备的照片分离的计算描述的重要一步,因为它可以推广到其他光解离过程,并以不同的方式自然扩展以实现更真实的模拟。
The computational description of correlated electronic structure, and particularly of excited states of many-electron systems, is an anticipated application for quantum devices. An important ramification is to determine the dominant molecular fragmentation pathways in photo-dissociation experiments of light-sensitive compounds, like sulfonium-based photo-acid generators used in photolithography. Here we simulate the static and dynamic electronic structure of the H$_3$S$^+$ molecule, taken as a minimal model of a triply-bonded sulfur cation, on a superconducting quantum processor of the IBM Falcon architecture. To this end, we generalize a qubit reduction technique termed entanglement forging or EF [A. Eddins et al., Phys. Rev. X Quantum, 3, 010309 (2022)], currently restricted to the evaluation of ground-state energies, to the treatment of molecular properties. While, in a conventional quantum simulation, a qubit represents a spin-orbital, within EF a qubit represents a spatial orbital, reducing the number of required qubits by half. We combine the generalized EF with quantum subspace expansion [W. Colless et al, Phys. Rev. X 8, 011021 (2018)], a technique used to project the time-independent Schrodinger equation for ground and excited states in a subspace. To enable experimental demonstration of this algorithmic workflow, we deploy a sequence of error-mitigation techniques. We compute dipole structure factors and partial atomic charges along the ground- and excited-state potential energy curves, revealing the occurrence of homo- and heterolytic fragmentation. This study is an important step toward the computational description of photo-dissociation on near-term quantum devices, as it can be generalized to other photodissociation processes and naturally extended in different ways to achieve more realistic simulations.