论文标题

HICU:在自动化ICD编码中利用层次结构进行课程学习

HiCu: Leveraging Hierarchy for Curriculum Learning in Automated ICD Coding

论文作者

Ren, Weiming, Zeng, Ruijing, Wu, Tongzi, Zhu, Tianshu, Krishnan, Rahul G.

论文摘要

医疗保健中有几个可以改善临床医生吞吐量的机会。一个这样的例子是辅助工具记录诊断代码时,当临床医生写笔记时。我们使用课程学习研究了医学代码预测的自动化,这是机器学习模型的培训策略,可逐渐将学习任务的硬度从易于到困难提高。课程学习的挑战之一是课程的设计 - 即,在逐渐增加难度的任务设计中。我们提出了分层课程学习(HICU),这是一种在输出空间中使用图形结构的算法,以设计用于多标签分类的课程。我们为多标签分类模型创建课程,以预测患者自然语言描述的ICD诊断和程序代码。通过利用ICD代码的层次结构,该层面基于人体的各种器官系统进行诊断代码,我们发现我们提出的课程改善了基于反复的,卷积和基于变压器的建筑的基于神经网络的预测模型的概括。我们的代码可在https://github.com/wren93/hicu-icd上找到。

There are several opportunities for automation in healthcare that can improve clinician throughput. One such example is assistive tools to document diagnosis codes when clinicians write notes. We study the automation of medical code prediction using curriculum learning, which is a training strategy for machine learning models that gradually increases the hardness of the learning tasks from easy to difficult. One of the challenges in curriculum learning is the design of curricula -- i.e., in the sequential design of tasks that gradually increase in difficulty. We propose Hierarchical Curriculum Learning (HiCu), an algorithm that uses graph structure in the space of outputs to design curricula for multi-label classification. We create curricula for multi-label classification models that predict ICD diagnosis and procedure codes from natural language descriptions of patients. By leveraging the hierarchy of ICD codes, which groups diagnosis codes based on various organ systems in the human body, we find that our proposed curricula improve the generalization of neural network-based predictive models across recurrent, convolutional, and transformer-based architectures. Our code is available at https://github.com/wren93/HiCu-ICD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源