论文标题
气体:为自动驾驶汽车系统生成快速准确的替代模型
GAS: Generating Fast and Accurate Surrogate Models for Autonomous Vehicle Systems
论文作者
论文摘要
现代自动驾驶汽车系统使用复杂的感知和控制组件。这些组件在此类系统的开发过程中可能会迅速变化,需要持续重新测试。不幸的是,这些复杂系统用于评估车辆安全性的高保真模拟是昂贵的。复杂性还阻碍了较少的计算密集型替代模型的创造。 我们提出气体,这是创建完整(感知,控制和动力学)自动驾驶汽车系统的替代模型的第一种方法,该模型包含复杂的感知和/或控制组件。气体的两阶段方法首先用感知模型代替了复杂的感知成分。然后,使用通用多项式混乱(GPC),气体构建完整车辆系统的多项式替代模型。我们证明了在两个应用程序中使用这些替代模型。首先,我们估计车辆随着时间的推移进入不安全状态的可能性。其次,我们在上一步中对其状态进行了对车辆系统的全球灵敏度分析。当车辆控制和动态特性在车辆开发过程中改变并节省了大量时间时,气体的方法还可以重复使用感知模型。 我们考虑了五种关于必须坠入相邻农作物的农作物管理车辆,必须留在车道内的自动驾驶汽车以及必须避免碰撞的无人飞机的情况。在这些情况下,每个系统都包含复杂的感知或控制组件。使用气体,我们为这些系统生成替代模型,并评估上述应用程序中生成的模型。对于安全状态概率估计(至少$ 2.1 \ tims $)和$ 1.4 \ tims $ $ $ $ $ $ $ $ 1.4 \ times $ $ 3.7 \ $ 1.4 \ times $的平均替代型号的平均速度为$ 3.7 \ times $(最低$ 1.3 \ times $),同时仍然保持高准确性。
Modern autonomous vehicle systems use complex perception and control components. These components can rapidly change during development of such systems, requiring constant re-testing. Unfortunately, high-fidelity simulations of these complex systems for evaluating vehicle safety are costly. The complexity also hinders the creation of less computationally intensive surrogate models. We present GAS, the first approach for creating surrogate models of complete (perception, control, and dynamics) autonomous vehicle systems containing complex perception and/or control components. GAS's two-stage approach first replaces complex perception components with a perception model. Then, GAS constructs a polynomial surrogate model of the complete vehicle system using Generalized Polynomial Chaos (GPC). We demonstrate the use of these surrogate models in two applications. First, we estimate the probability that the vehicle will enter an unsafe state over time. Second, we perform global sensitivity analysis of the vehicle system with respect to its state in a previous time step. GAS's approach also allows for reuse of the perception model when vehicle control and dynamics characteristics are altered during vehicle development, saving significant time. We consider five scenarios concerning crop management vehicles that must not crash into adjacent crops, self driving cars that must stay within their lane, and unmanned aircraft that must avoid collision. Each of the systems in these scenarios contain a complex perception or control component. Using GAS, we generate surrogate models for these systems, and evaluate the generated models in the applications described above. GAS's surrogate models provide an average speedup of $3.7\times$ for safe state probability estimation (minimum $2.1\times$) and $1.4\times$ for sensitivity analysis (minimum $1.3\times$), while still maintaining high accuracy.