论文标题
在3维切片的色数上
On the chromatic numbers of 3-dimensional slices
论文作者
论文摘要
我们证明,对于任意$ \ varepsilon> 0 $保留\ [χ(\ MathBb {r}^3 \ times [0,\ varepsilon]^6)\ geq 10,\ q Q Q,\ q q Q Q,\],其中$χ(m)$ cons in vertex集合$ m $ $ m M $ shote的$χ(m)$站立。
We prove that for an arbitrary $\varepsilon > 0$ holds \[ χ(\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, \] where $χ(M)$ stands for the chromatic number of an (infinite) graph with the vertex set $M$ and the edge set consists of pairs of monochromatic points at the distance 1 apart.