论文标题

与相关到达的在线随机匹配的非参数框架

A Nonparametric Framework for Online Stochastic Matching with Correlated Arrivals

论文作者

Aouad, Ali, Ma, Will

论文摘要

用于匹配市场和收入管理设置的在线算法的设计通常受随机性之前的约束,而需求过程是由固定长度的查询序列形成的,该查询序列具有未知类型的固定序列,每种序列是独立绘制的。 {\ em序列独立性}的这种假设意味着每种类型的需求,即给定类型的查询数,具有较低的差异,并且大约是泊松分布的。本文探讨了与串行独立性假设不同的在线边缘加权匹配的更通用的随机模型。我们提出了两个新模型,即\ Indep和\ correl,它们通过将需求的非参数分布与到达模式的标准假设相结合 - 对抗性或随机顺序,从而捕获了不同形式的序列相关性。 \ Indep模型对需求具有任意边际分布,但假定客户类型的横截面独立性,而\ correl模型捕获了跨客户类型的常见冲击。我们证明,仅依靠预期需求信息的流体放松具有任意的性能保证。相比之下,我们开发了新的算法,这些算法基本上可以在每个模型中实现最佳的恒定因素性能保证。我们的数学分析包括更严格的线性编程放松,以利用分销知识,以及在$ \ indep $的情况下采用新的无损随机舍入方案。在对$ \ Indep $型号的数值模拟中,我们发现在高方差需求下,更严格的放松是有益的,并且我们的需求感知的圆形计划可以超越所吸引的库存圆形。

The design of online algorithms for matching markets and revenue management settings is usually bound by the stochastic prior that the demand process is formed by a fixed-length sequence of queries with unknown types, each drawn independently. This assumption of {\em serial independence} implies that the demand of each type, i.e., the number of queries of a given type, has low variance and is approximately Poisson-distributed. This paper explores more general stochastic models for online edge-weighted matching that depart from the serial independence assumption. We propose two new models, \Indep and \Correl, that capture different forms of serial correlations by combining a nonparametric distribution for the demand with standard assumptions on the arrival patterns -- adversarial or random order. The \Indep model has arbitrary marginal distributions for the demands but assumes cross-sectional independence for the customer types, whereas the \Correl model captures common shocks across customer types. We demonstrate that fluid relaxations, which rely solely on expected demand information, have arbitrarily bad performance guarantees. In contrast, we develop new algorithms that essentially achieve optimal constant-factor performance guarantees in each model. Our mathematical analysis includes tighter linear programming relaxations that leverage distribution knowledge, and a new lossless randomized rounding scheme in the case of $\Indep$. In numerical simulations of the $\Indep$ model, we find that tighter relaxations are beneficial under high-variance demand and that our demand-aware rounding scheme can outperform stockout-aware rounding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源