论文标题
SUPERLINE3D:自我监督的线段细分和激光点云的描述
SuperLine3D: Self-supervised Line Segmentation and Description for LiDAR Point Cloud
论文作者
论文摘要
杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册之间执行关联,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型而无需耗时且乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们的基于线路的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
Poles and building edges are frequently observable objects on urban roads, conveying reliable hints for various computer vision tasks. To repetitively extract them as features and perform association between discrete LiDAR frames for registration, we propose the first learning-based feature segmentation and description model for 3D lines in LiDAR point cloud. To train our model without the time consuming and tedious data labeling process, we first generate synthetic primitives for the basic appearance of target lines, and build an iterative line auto-labeling process to gradually refine line labels on real LiDAR scans. Our segmentation model can extract lines under arbitrary scale perturbations, and we use shared EdgeConv encoder layers to train the two segmentation and descriptor heads jointly. Base on the model, we can build a highly-available global registration module for point cloud registration, in conditions without initial transformation hints. Experiments have demonstrated that our line-based registration method is highly competitive to state-of-the-art point-based approaches. Our code is available at https://github.com/zxrzju/SuperLine3D.git.