论文标题

用于整个空间多任务学习的多尺度用户行为网络

Multi-Scale User Behavior Network for Entire Space Multi-Task Learning

论文作者

Jin, Jiarui, Chen, Xianyu, Zhang, Weinan, Chen, Yuanbo, Jiang, Zaifan, Zhu, Zekun, Su, Zhewen, Yu, Yong

论文摘要

对用户的多种行为进行建模是现代电子商务的重要组成部分,其广泛采用的应用程序是共同优化点击率(CTR)和转换率(CVR)预测。大多数现有方法忽略了用户行为的两个关键特征的效果:对于每个项目列表,(i)上下文依赖性指的是,用户对任何项目的行为均未纯粹由项目本身确定,而是受用户以前的行为(例如,点击,购买)对同一序列中的其他项目的影响; (ii)多个时间尺度意味着用户可能会经常点击,但要定期购买。为此,我们开发了一个新的多尺度用户行为网络,名为层次重复排名(英雄),该排名将上下文信息结合在一起,以以多规模的方式估算用户多个行为。具体而言,我们引入了一个层次结构框架,其中下层对用户的参与行为进行了建模,而上层则估计用户的满意度行为。所提出的体系结构可以自动学习适当的时间尺度,以捕获动态用户的行为模式。除了体系结构外,我们还介绍了霍克斯进程,以形成一个新颖的复发单元,该单元不仅可以在上下文中编码项目的功能,而且还可以从用户以前的行为中提出激发或沮丧。我们进一步表明,可以通过与生存分析技术的结合来扩展英雄以建立公正的排名系统。与最先进的方法相比,三个大规模工业数据集的大量实验证明了我们模型的优势。

Modelling the user's multiple behaviors is an essential part of modern e-commerce, whose widely adopted application is to jointly optimize click-through rate (CTR) and conversion rate (CVR) predictions. Most of existing methods overlook the effect of two key characteristics of the user's behaviors: for each item list, (i) contextual dependence refers to that the user's behaviors on any item are not purely determinated by the item itself but also are influenced by the user's previous behaviors (e.g., clicks, purchases) on other items in the same sequence; (ii) multiple time scales means that users are likely to click frequently but purchase periodically. To this end, we develop a new multi-scale user behavior network named Hierarchical rEcurrent Ranking On the Entire Space (HEROES) which incorporates the contextual information to estimate the user multiple behaviors in a multi-scale fashion. Concretely, we introduce a hierarchical framework, where the lower layer models the user's engagement behaviors while the upper layer estimates the user's satisfaction behaviors. The proposed architecture can automatically learn a suitable time scale for each layer to capture the dynamic user's behavioral patterns. Besides the architecture, we also introduce the Hawkes process to form a novel recurrent unit which can not only encode the items' features in the context but also formulate the excitation or discouragement from the user's previous behaviors. We further show that HEROES can be extended to build unbiased ranking systems through combinations with the survival analysis technique. Extensive experiments over three large-scale industrial datasets demonstrate the superiority of our model compared with the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源