论文标题

混合网:自主赛车的结构性深神经运动预测

MixNet: Structured Deep Neural Motion Prediction for Autonomous Racing

论文作者

Karle, Phillip, Török, Ferenc, Geisslinger, Maximilian, Lienkamp, Markus

论文摘要

可靠地预测围绕自动赛车的参赛者车辆的动议对于有效和表现计划至关重要。尽管高度表现力,但深度神经网络是黑盒模型,使其在安全至关重要的应用中(例如自动驾驶)中的用法挑战。在本文中,我们介绍了一种结构化的方式,以预测具有深层神经网络的对立赛车的运动。可能的一组可能的输出轨迹受到限制。因此,可以给出有关预测的质量保证。我们通过将模型与基于LSTM的Encoder-Decoder体系结构一起评估模型来报告该模型的性能,该架构是从高保真硬件中获得的数据中获得的。拟议的方法的表现优于预测准确性的基线,但仍能履行质量保证。因此,该模型的强大现实应用已被证明。提出的模型部署在慕尼黑技术大学的Indy Automous Challenge 2021中。本研究中使用的代码可作为开放源软件,网址为www.github.com/tumftm/mixnet。

Reliably predicting the motion of contestant vehicles surrounding an autonomous racecar is crucial for effective and performant planning. Although highly expressive, deep neural networks are black-box models, making their usage challenging in safety-critical applications, such as autonomous driving. In this paper, we introduce a structured way of forecasting the movement of opposing racecars with deep neural networks. The resulting set of possible output trajectories is constrained. Hence quality guarantees about the prediction can be given. We report the performance of the model by evaluating it together with an LSTM-based encoder-decoder architecture on data acquired from high-fidelity Hardware-in-the-Loop simulations. The proposed approach outperforms the baseline regarding the prediction accuracy but still fulfills the quality guarantees. Thus, a robust real-world application of the model is proven. The presented model was deployed on the racecar of the Technical University of Munich for the Indy Autonomous Challenge 2021. The code used in this research is available as open-source software at www.github.com/TUMFTM/MixNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源