论文标题

Unrealego:一个新的数据集,用于强大的中心3D人类运动捕获

UnrealEgo: A New Dataset for Robust Egocentric 3D Human Motion Capture

论文作者

Akada, Hiroyasu, Wang, Jian, Shimada, Soshi, Takahashi, Masaki, Theobalt, Christian, Golyanik, Vladislav

论文摘要

我们提出了Unrealego,即用于以Egentric 3D人类姿势估计的新的大规模自然主义数据集。 Unrealego是基于配备两个鱼眼摄像机的眼镜的高级概念,可用于无约​​束的环境。我们设计了它们的虚拟原型,并将其附加到3D人体模型中以进行立体视图捕获。接下来,我们会产生大量的人类动作。结果,Unrealego是第一个提供现有egipentric数据集中各种动作最多动作的野外立体声图像的数据集。此外,我们提出了一种新的基准方法,其简单但有效的想法是为立体声输入设计2D关键点估计模块,以改善3D人体姿势估计。广泛的实验表明,我们的方法在定性和定量上优于先前的最新方法。 Unrealego和我们的源代码可在我们的项目网页上找到。

We present UnrealEgo, i.e., a new large-scale naturalistic dataset for egocentric 3D human pose estimation. UnrealEgo is based on an advanced concept of eyeglasses equipped with two fisheye cameras that can be used in unconstrained environments. We design their virtual prototype and attach them to 3D human models for stereo view capture. We next generate a large corpus of human motions. As a consequence, UnrealEgo is the first dataset to provide in-the-wild stereo images with the largest variety of motions among existing egocentric datasets. Furthermore, we propose a new benchmark method with a simple but effective idea of devising a 2D keypoint estimation module for stereo inputs to improve 3D human pose estimation. The extensive experiments show that our approach outperforms the previous state-of-the-art methods qualitatively and quantitatively. UnrealEgo and our source codes are available on our project web page.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源