论文标题

使用正弦激活网络对多维医学图像的损失压缩:一项评估研究

Lossy compression of multidimensional medical images using sinusoidal activation networks: an evaluation study

论文作者

Mancini, Matteo, Jones, Derek K., Palombo, Marco

论文摘要

在这项工作中,我们评估了如何利用具有周期性激活功能的神经网络可靠地压缩大型多维医学图像数据集,并将概念验证应用应用于4D扩散加权MRI(DMRI)。在医学成像景观中,多维MRI是开发对基础组织微观结构既敏感又特有的生物标志物的关键研究领域。但是,这些数据的高维质在存储和共享功能和相关成本方面构成了挑战,需要适当的算法能够在低维空间中表示信息。深度学习中的最新理论发展表明了周期性激活函数如何成为图像隐式神经表示的强大工具,并可用于压缩2D图像。在这里,我们将此方法扩展到4D图像,并展示如何通过正弦激活网络的参数准确地表示任何给定的4D DMRI数据集,从而达到数据压缩率是标准偏转算法的10倍。我们的结果表明,所提出的方法优于基准relu和tanh激活感知到均方根误差,峰值信噪比和结构相似性指数。随后使用张量和球形谐波表示的分析表明,提出的损耗压缩可以准确地重现原始数据的特征,从而相对误差比基准JPEG2000损耗压缩低约5至10倍,并且类似于标准的预处理步骤,例如在MP-PCA DENIPECT中的标准预处理步骤,表明在当前接受了临床范围内的信息损失,以置于持续的信息范围内。

In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying tissue microstructure. However, the high-dimensional nature of these data poses a challenge in terms of both storage and sharing capabilities and associated costs, requiring appropriate algorithms able to represent the information in a low-dimensional space. Recent theoretical developments in deep learning have shown how periodic activation functions are a powerful tool for implicit neural representation of images and can be used for compression of 2D images. Here we extend this approach to 4D images and show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network, achieving a data compression rate about 10 times higher than the standard DEFLATE algorithm. Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index. Subsequent analyses using the tensor and spherical harmonics representations demonstrate that the proposed lossy compression reproduces accurately the characteristics of the original data, leading to relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy compression and similar to standard pre-processing steps such as MP-PCA denosing, suggesting a loss of information within the currently accepted levels for clinical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源