论文标题
关于泊松分布式随机schrÖdinger操作员的状态密度的渐近扩展
On asymptotic expansions of the density of states for Poisson distributed random Schrödinger operators
论文作者
论文摘要
我们研究了矩阵元件的预期值对分解的边界值以及随机schrödinger操作员的状态密度以及根据泊松过程分布的潜在分布的状态。这些数量在小疾病极限的渐近扩张被得出。给出了扩展系数的明确估计值,我们表明它们的无限体积限制实际上是有限的,因为光谱参数接近游离laplacian的光谱。
We study expectation values of matrix elements for boundary values of the resolvent as well as the density of states for a random Schrödinger operator with potential distributed according to a Poisson process. Asymptotic expansions for these quantities in the limit of small disorder are derived. Explicit estimates for the expansion coefficients are given and we show that their infinite volume limits are in fact finite as the spectral parameter approaches the spectrum of the free Laplacian.