论文标题
关于派生的代数几何形状的注释
Notes on derived algebraic geometry
论文作者
论文摘要
这些是在动画戒指的背景下的衍生代数几何形状的注释。更确切地说,我们回想起Toën-Vaquié的证据,即派生的Perfect Complextes的堆栈在本地几何是$ \ infty $ - 类别的语言。一路上,我们回想起派生的交换代数和派生代数几何形状中必要的概念。我们还分析了派生堆栈上的变形理论和准辅解模块。
These are notes on derived algebraic geometry in the context of animated rings. More precisely, we recall the proof of Toën-Vaquié that the derived stack of perfect complexes is locally geometric in the language of $\infty$-categories. Along the way, we recall the necessary notions in derived commutative algebra and derived algebraic geometry. We also analyze the deformation theory and quasi-coherent modules over derived stacks.