论文标题
在表面上的光调节衣原体细胞的吸附和解吸
Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces
论文作者
论文摘要
表面的微生物定植是迈向生物膜形成的第一步,这在自然界中是一种反复出现的现象,对技术和医疗环境中有有益和有害的影响。因此,目前有兴趣阐明微生物在固体表面上生物膜形成的初始阶段的基本方面。虽然大多数研究都以了解细菌表面定殖,但使用光合微藻的基本层面观察结果是难以捉摸的。最近的单细胞研究表明,衣原体的鞭毛粘附在蓝光下打开,并在红光下关闭[Kreis等人,自然物理学,2018,14,45-49]。在这里,我们研究了Reinhardtii C. reinhardtii的这种可轻开关的表面缔合,并使用明亮的场光学显微镜测量了玻璃表面上运动细胞悬浮液的吸附和解吸动力学。我们观察到,相对于设置蓝光和红色灯条件的时间,这两个过程都表现出响应滞后,并使用时间延迟的langmuir-type动力学对此特征进行建模。我们发现细胞吸附的发生速度明显快于解吸,我们将其归因于细胞的蛋白质介导的分子粘附机制。使用光性盲衣原体突变体的吸附实验表明,光持不影响细胞吸附动力学。因此,该方法可以用作表征表现出光调节表面粘附的微生物物种表面定植的动力学的测定方法。
Microbial colonization of surfaces represents the first step towards biofilm formation, which is a recurring phenomenon in nature with beneficial and detrimental implications in technological and medical settings. Consequently, there is a current interest in elucidating the fundamental aspects of the initial stages of biofilm formation of microorganisms on solid surfaces. While most of the research is oriented to understand bacterial surface colonization, such observations at a fundamental level using photosynthetic microalgae are thus far elusive. Recent single-cell studies showed that the flagellar adhesion of Chlamydomonas is switched on in blue light and switched off under red light [Kreis et al., Nature Physics, 2018, 14, 45-49]. Here, we study this light-switchable surface association of C. reinhardtii on the population level and measure the kinetics of adsorption and desorption of suspensions of motile cells on glass surfaces using bright field optical microscopy. We observe that both processes exhibit a response lag relative to the time at which the blue- and red-light conditions are set and model this feature using time-delayed Langmuir-type kinetics. We find that cell adsorption occurs significantly faster than desorption, which we attribute to the protein-mediated molecular adhesion mechanism of the cells. Adsorption experiments using phototactically blind Chlamydomonas mutants demonstrate that phototaxis does not affect the cell adsorption kinetics. Hence, this method can be used as an assay for characterizing the dynamics of the surface colonization of microbial species exhibiting light-regulated surface adhesion.