论文标题
部分可观测时空混沌系统的无模型预测
Stable determination of coefficients in semilinear parabolic system with dynamic boundary conditions
论文作者
论文摘要
在这项工作中,我们研究了在耦合的半连续性抛物线系统中出现的四个依赖空间依赖系数的稳定确定,其具有可变的扩散矩阵受动态边界条件,这些矩阵伴随了界限,这些边界条件伴随着界限。我们证明了通过仅一个观察成分的内部和边界电势的Lipschitz稳定性,该稳定性位于物理结构域的任何任意开放子集中。证明主要取决于表面扩散类型的动态边界条件的一些新的卡尔曼估计。
In this work, we study the stable determination of four space-dependent coefficients appearing in a coupled semilinear parabolic system with variable diffusion matrices subject to dynamic boundary conditions which couple intern-boundary phenomena. We prove a Lipschitz stability result for interior and boundary potentials by means of only one observation component, localized in any arbitrary open subset of the physical domain. The proof mainly relies on some new Carleman estimates for dynamic boundary conditions of surface diffusion type.