论文标题
大规模的产品检索和弱监督的代表学习
Large-Scale Product Retrieval with Weakly Supervised Representation Learning
论文作者
论文摘要
大规模弱监督的产品检索是实际上有用但在计算上具有挑战性的问题。本文介绍了在CVPR 2022的第九次透明视觉分类研讨会(FGVC9)的研讨会上举行的eBay Visual搜索挑战(EPRODUCT)的新颖解决方案。该竞赛提出了两个挑战:(a)电子商务是一个巨大的善良域名,包括许多具有细微视觉差异的产品; (b)缺乏用于模型培训的目标实例级标签,只有粗糙的类别标签和产品标签可用。为了克服这些障碍,我们通过一组专用设计制定了强大的解决方案:(a)我们从产品标题中挖掘了数千个伪属性,而不是直接使用文本培训数据,并将其用作多标签分类的基础真相。 (b)我们将几个强大的骨干与先进的培训配方结合在一起,以进行更具歧视性的表示。 (c)我们进一步介绍了许多后处理技术,包括美白,重新排列和模型集合以进行检索。通过达到71.53%的3月,我们的解决方案“涉及国王”在排行榜上获得了第二个职位。
Large-scale weakly supervised product retrieval is a practically useful yet computationally challenging problem. This paper introduces a novel solution for the eBay Visual Search Challenge (eProduct) held at the Ninth Workshop on Fine-Grained Visual Categorisation workshop (FGVC9) of CVPR 2022. This competition presents two challenges: (a) E-commerce is a drastically fine-grained domain including many products with subtle visual differences; (b) A lacking of target instance-level labels for model training, with only coarse category labels and product titles available. To overcome these obstacles, we formulate a strong solution by a set of dedicated designs: (a) Instead of using text training data directly, we mine thousands of pseudo-attributes from product titles and use them as the ground truths for multi-label classification. (b) We incorporate several strong backbones with advanced training recipes for more discriminative representation learning. (c) We further introduce a number of post-processing techniques including whitening, re-ranking and model ensemble for retrieval enhancement. By achieving 71.53% MAR, our solution "Involution King" achieves the second position on the leaderboard.