论文标题
基于计算机视觉的建筑物和建筑环境分析:对当前方法的系统评价
Computer vision-based analysis of buildings and built environments: A systematic review of current approaches
论文作者
论文摘要
本文分析了2011年至2021年发表的88个来源,对基于计算机的建筑物和建筑环境进行了首次系统评价,以评估其对建筑和城市设计研究的价值。遵循多阶段的选择过程,讨论了有关建筑应用,例如建筑物分类,详细分类,定性环境分析,建筑条件调查和建筑价值估算等建筑应用程序的类型。这揭示了当前的研究差距和趋势,并突出了研究目标的两个主要类别。首先,将计算机视觉方法用于架构图像数据,然后可以帮助自动化时间耗时,劳动密集型或复杂的视觉分析任务。其次,通过查找视觉,统计和定性数据之间的模式和关系来探索机器学习方法的方法论上的好处,以研究有关建筑环境的新问题,这可以克服传统手动分析的局限性。越来越多的研究为建筑和设计研究提供了新的方法,论文确定了未来的挑战和研究方向。
Analysing 88 sources published from 2011 to 2021, this paper presents a first systematic review of the computer vision-based analysis of buildings and the built environments to assess its value to architectural and urban design studies. Following a multi-stage selection process, the types of algorithms and data sources used are discussed in respect to architectural applications such as a building classification, detail classification, qualitative environmental analysis, building condition survey, and building value estimation. This reveals current research gaps and trends, and highlights two main categories of research aims. First, to use or optimise computer vision methods for architectural image data, which can then help automate time-consuming, labour-intensive, or complex tasks of visual analysis. Second, to explore the methodological benefits of machine learning approaches to investigate new questions about the built environment by finding patterns and relationships between visual, statistical, and qualitative data, which can overcome limitations of conventional manual analysis. The growing body of research offers new methods to architectural and design studies, with the paper identifying future challenges and directions of research.