论文标题

数据驱动的解决方案是由半导体掺杂重建引起的逆问题的解决方案

Data-driven solutions of ill-posed inverse problems arising from doping reconstruction in semiconductors

论文作者

Piani, Stefano, Farrell, Patricio, Lei, Wenyu, Rotundo, Nella, Heltai, Luca

论文摘要

半导体设备中掺杂浓度的无损估计对于从晶体生长,最近重新定义1公斤到缺陷到缺陷和不均匀性检测的许多应用至关重要。已经开发了许多技术(例如LBIC,EBIC和LPS),可以通过光伏效应检测掺杂变化。这个想法是在几个位置照亮样品,并在触点处检测到所得的电压下降或电流。我们基于漂移扩散系统,通过不适合的全球和局部反问题对一般类型的光伏技术进行建模,该系统描述了自洽电场中的电荷传输。掺杂轮廓作为参数字段包括在内。为了在数值上解决与物理相关的局部逆问题,我们基于最小二乘,多层感知器和残留的神经网络提出了三种不同的数据驱动方法。我们的数据驱动方法重建了沿样品表面激光扫描引起的给定空间变化的电压信号的掺杂曲线。这些方法是根据合成数据集(对不同照明位置的一对离散掺杂曲线和相应的光电压信号对)进行训练的,这些信号是由正向问题的有效提供有限的有限体积解决方案生成的。虽然线性最小平方方法在$ 10 \%$上产生的平均绝对$ \ ell^\ infty $错误,但非线性网络大约将此错误分别为$ 5 \%$。最后,我们优化了相关的超参数,并测试我们在噪声方面的鲁棒性。

The non-destructive estimation of doping concentrations in semiconductor devices is of paramount importance for many applications ranging from crystal growth, the recent redefinition of the 1kg to defect, and inhomogeneity detection. A number of technologies (such as LBIC, EBIC and LPS) have been developed which allow the detection of doping variations via photovoltaic effects. The idea is to illuminate the sample at several positions and detect the resulting voltage drop or current at the contacts. We model a general class of such photovoltaic technologies by ill-posed global and local inverse problems based on a drift-diffusion system that describes charge transport in a self-consistent electrical field. The doping profile is included as a parametric field. To numerically solve a physically relevant local inverse problem, we present three different data-driven approaches, based on least squares, multilayer perceptrons, and residual neural networks. Our data-driven methods reconstruct the doping profile for a given spatially varying voltage signal induced by a laser scan along the sample's surface. The methods are trained on synthetic data sets (pairs of discrete doping profiles and corresponding photovoltage signals at different illumination positions) which are generated by efficient physics-preserving finite volume solutions of the forward problem. While the linear least square method yields an average absolute $\ell^\infty$ error around $10\%$, the nonlinear networks roughly halve this error to $5\%$, respectively. Finally, we optimize the relevant hyperparameters and test the robustness of our approach with respect to noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源