论文标题

潮汐强迫行星波在太阳能恒星的速阵中

Tidally Forced Planetary Waves in the Tachocline of Solar-like Stars

论文作者

Horstmann, G. M., Mamatsashvili, G., Giesecke, A., Zaqarashvili, T. V., Stefani, F.

论文摘要

行星托管太阳能恒星中的大气波是否可以基本上引起潮汐强迫?在影响太空天气甚至是发电机与功能相关的水平上大大?尤其是,在太阳近表面层中检测到的低频罗斯比波在响应黑子循环尺度扰动方面被注定了。在本文中,我们试图解决这些问题,因为我们为转速层制定了强制波模型,该模型被广泛认为是几种磁性水力动力行星波的发源地,即Rossby,Rossby,Rossby,Poincaré(Poincaré),Kelvin,kelvin,alfvén和Gravity Waves。转速素被建模为浅等离子体气氛,其顶部有有效的自由表面,我们在笛卡尔$β$平面近似中描述了该表面。作为以前研究的新颖性,我们为管理方程式配备了保守的潮汐潜力和线性摩擦法来解释耗散。我们将线性化处理方程式与一个解耦方程相结合,这有助于易于接近的分析。在几个有趣的自由,阻尼和强制波限制中,在中纬度和赤道捕获的波浪中介绍和讨论了分析结果。对于在圆形轨道遵循单个潮汐产生的身体的理想情况下,我们得出了一种明确的分析解决方案,我们将其应用于太阳,以估计对木星的前阶响应。我们的分析表明,在低频扰动上共鸣的Rossby Waves可能会以$ 10^1-1-10^2 \,{\ rm cm} \,{\ rm s}^{\ rm s}^{ - 1} $的速度达到相当大的速度振幅。

Can atmospheric waves in planet-hosting solar-like stars substantially resonate to tidal forcing? Substantially at a level of impacting the space weather or even of being dynamo-relevant? In particular, low-frequency Rossby waves, which have been detected in the solar near-surface layers, are predestined at responding to sunspot cycle-scale perturbations. In this paper, we seek to address these questions as we formulate a forced wave model for the tachocline layer, which is widely considered as the birthplace of several magnetohydrodynamic planetary waves, i.e., Rossby, inertia-gravity (Poincaré), Kelvin, Alfvén and gravity waves. The tachocline is modeled as a shallow plasma atmosphere with an effective free surface on top that we describe within the Cartesian $β$-plane approximation. As a novelty to former studies, we equip the governing equations with a conservative tidal potential and a linear friction law to account for dissipation. We combine the linearized governing equations to one decoupled wave equation, which facilitates an easily approachable analysis. Analytical results are presented and discussed within several interesting free, damped and forced wave limits for both mid-latitude and equatorially trapped waves. For the idealized case of a single tide generating body following a circular orbit, we derive an explicit analytic solution that we apply to our Sun for estimating leading-order responses to Jupiter. Our analysis reveals that Rossby waves resonating to low-frequency perturbations can potentially reach considerable velocity amplitudes in the order of $10^1 - 10^2\, {\rm cm}\, {\rm s}^{-1}$, which, however, strongly rely on the yet unknown total dissipation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源