论文标题
一种迭代的有限方法,用于光原子的Kohn-Sham方程:本科生的密度功能理论教程
A iterative finite method approach to Kohn-Sham equations of light atoms: Density Functional Theory tutorial for undergraduate students
论文作者
论文摘要
在本文中,我们将研究helium密度功能描述的FEM解决方案。自以为是的解决,包括电子电子排斥和交换相关效应。该项目将通过四个不同的连续任务进行分配:用于氢的数值HARTREE电位(i II)和核电位(ii)(第II节),用于氢(Sect。III)和氦(第IV条)的Schrodinger方程。该代码包含在{0,1,2,3,4} $ in {0,1,2,3,4} $中的$ n \的格式中,与每个任务的支持材料(代码)相对应。每个部分的格式在三种情况下是标准配置。从理论介绍开始,我们主要解释代码,并以价值或图形的形式显示主要结果。稍后,我们尝试研究提出的方法的收敛性和稳定性。该规则的例外可以在第二部分中找到,与潜在项的分析减少相对应。
In this article we are going to study the FEM solution to the Density Functional description of Helium. Solving self-consistently including electron-electron repulsion and exchange-correlation effects. This project will be split in four different consecutive task with different approaches: Numerical Hartree potential (Sect. I) and nuclear potential (Sect. II) for the hydrogen and resolution of Schrodinger equation for hydrogen (Sect. III) and helium (Sect. IV). The code is included in the format Sinajo with $n\in{0,1,2,3,4}$ corresponding with supporting material (code) to each task. The format of each section is standard in three cases. Beginning with a theoretical introduction, we mainly explain the code and show the principal results in form of values or graphics. Later on, we try to study the convergence and stability of the method proposed. Exception to this rule can be found in Section II, corresponding to the analytical deduction of a potential term.