论文标题
大规模垃圾热收集的可持续性使用热电
Sustainability of large scale waste heat harvesting using thermoelectric
论文作者
论文摘要
全球产生的废热量为69.058 EJ,可以分为低温373 K,30.496 EJ,中等温度373 K至573 K,14.431 EJ和高温573 K,24.131 EJ。这些充电的值已用于确定将Exergy转换为电力所需的最小PN连接数。发现转换高温充电所需的连接数量从8.22x10^11增加到24.66x10^11,当腿的长宽比从0.5 cm^1增加到1.5 cm^1时。为了将低温充电转换为81.76x10^11至245.25x10^11连接,具体取决于腿的纵横比。因此,包含诸如PB,BI,TE,SB,SE和SN等元素的合金的数量需要合成这些连接的元素,因此是数百万吨的阶数,这意味着所需的元素也具有相似的幅度。然而,当前的世界产量远远远远没有达到这一要求,这表明供应链的风险很大。这些元素的生产即使有可用的资源,也会发出数百万吨的二氧化碳,表明当前的合金无法用于废热。
The amount of waste heat exergy generated globally is 69.058 EJ which can be divided into, low temperature 373 K, 30.496 EJ, medium temperature 373 K to 573 K, 14.431 EJ and high temperature 573 K, 24.131 EJ. These values of exergy have been used to determine the minimum number of pn junctions required to convert the exergy into electrical power. It is found that the number of junctions required to convert high temperature exergy increases from 8.22x10^11 to 24.66x10^11 when the aspect ratio of the legs increases from 0.5 cm^1 to 1.5 cm^1. To convert the low temperature exergy, 81.76x10^11 to 245.25x10^11 junctions will be required depending on the legs aspect ratio. The quantity of alloys containing elements such as Pb, Bi, Te, Sb, Se and Sn required to synthesize these junctions therefore is of the order of millions of tons which means the elements required is also of similar magnitude. The current world production of these elements however falls far short of this requirement, indicating significant supply chain risk. The production of these elements, even if resources are available, will emit millions of tons of CO2 showing that current alloys are non-sustainable for waste heat recovery.