论文标题

代谢组学数据分析的加权缩放方法

Weighted Scaling Approach for Metabolomics Data Analysis

论文作者

Biswas, Biplab, Kumar, Nishith, Hoque, Md Aminul, Alam, Md Ashad

论文摘要

系统变化是代谢组学数据分析中的常见问题。因此,使用不同的缩放和归一化技术来预处理数据进行代谢组学数据分析。尽管文献中有几种缩放方法可用,但是缩放,转化和/或归一化技术的选择会影响进一步的统计分析。选择适当的缩放技术进行下游分析以获得准确的结果或做出适当的决定是一项挑战。此外,现有的缩放技术对离群值或极值敏感。为了填补空白,我们的目标是引入不受异常值影响的强大缩放方法,并为下游分析提供了更准确的结果。在这里,我们引入了一种新的加权缩放方法,该方法对异常值具有鲁棒性,但是,在数据预处理中不需要额外的异常检测/治疗步骤,并且还将其与通过人工和实际代谢组学数据集进行了将其与常规缩放和归一化技术进行了比较。在不存在和存在不同百分比的异常值的情况下,我们评估了所提出方法的性能与其他现有的常规缩放技术相比。结果表明,在大多数情况下,在不存在和存在异常值的情况下,提出的缩放技术的性能比传统的缩放方法更好。所提出的方法改善了进一步的下游代谢组学分析。提出的强大缩放方法的R函数可在https://github.com/nishithkumarpaul/robustscaling/blob/main/main/wscaling.r.r

Systematic variation is a common issue in metabolomics data analysis. Therefore, different scaling and normalization techniques are used to preprocess the data for metabolomics data analysis. Although several scaling methods are available in the literature, however, choice of scaling, transformation and/or normalization technique influence the further statistical analysis. It is challenging to choose the appropriate scaling technique for downstream analysis to get accurate results or to make a proper decision. Moreover, the existing scaling techniques are sensitive to outliers or extreme values. To fill the gap, our objective is to introduce a robust scaling approach that is not influenced by outliers as well as provides more accurate results for downstream analysis. Here, we introduced a new weighted scaling approach that is robust against outliers however, where no additional outlier detection/treatment step is needed in data preprocessing and also compared it with the conventional scaling and normalization techniques through artificial and real metabolomics datasets. We evaluated the performance of the proposed method in comparison to the other existing conventional scaling techniques using metabolomics data analysis in both the absence and presence of different percentages of outliers. Results show that in most cases, the proposed scaling technique performs better than the traditional scaling methods in both the absence and presence of outliers. The proposed method improves the further downstream metabolomics analysis. The R function of the proposed robust scaling method is available at https://github.com/nishithkumarpaul/robustScaling/blob/main/wscaling.R

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源