论文标题
搜索还是导航到?对象导航的双重自适应思维
Search for or Navigate to? Dual Adaptive Thinking for Object Navigation
论文作者
论文摘要
“搜索”或“导航到”?当找到一个物体时,这两个选择总是在我们的潜意识中出现。在看到目标之前,我们根据经验搜索目标。看到目标后,我们记住目标位置并导航到。但是,最近在对象导航字段中的方法几乎仅考虑使用对象关联来增强“搜索”阶段,同时忽略“导航到”阶段的重要性。因此,本文提出了双重自适应思维(DAT)方法,以灵活调整不同导航阶段的不同思维策略。双重思考包括具有目标位置能力的对象关联能力和导航思维的搜索思维。为了使导航思维更有效,我们设计了面向目标的内存图(TOMG)来存储历史目标信息和目标感知的多规模聚合器(TAMSA)以编码相对目标位置。我们在AI2-数据集上评估我们的方法。与最新方法(SOTA)方法相比,我们的方法报告了成功率(SR)增长10.8%,21.5%和15.7%,成功加权路径长度(SPL)和成功通过导航效率(SNE)加权。
"Search for" or "Navigate to"? When finding an object, the two choices always come up in our subconscious mind. Before seeing the target, we search for the target based on experience. After seeing the target, we remember the target location and navigate to. However, recently methods in object navigation field almost only consider using object association to enhance "search for" phase while neglect the importance of "navigate to" phase. Therefore, this paper proposes the dual adaptive thinking (DAT) method to flexibly adjust the different thinking strategies at different navigation stages. Dual thinking includes search thinking with the object association ability and navigation thinking with the target location ability. To make the navigation thinking more effective, we design the target-oriented memory graph (TOMG) to store historical target information and the target-aware multi-scale aggregator (TAMSA) to encode the relative target position. We assess our methods on the AI2-Thor dataset. Compared with the state-of-the-art (SOTA) method, our method reports 10.8%, 21.5% and 15.7% increase in success rate (SR), success weighted by path length (SPL) and success weighted by navigation efficiency (SNE), respectively.