论文标题
Cloudenteenty:3D点云学习的有效多尺度注意力方案
CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point Cloud Learning
论文作者
论文摘要
有效处理3D数据一直是一个挑战。大规模点云上的空间操作以稀疏数据存储,需要额外的成本。由于变形金刚的成功吸引,研究人员正在利用多头关注视力任务。但是,变压器中的注意力计算在输入数量和点云等集合的空间直觉中具有二次复杂性。我们重新设计了这项工作中的“变压器”,并将其纳入形状分类以及部分和场景细分的层次结构框架中。我们提出了当地的关注单元,该单元捕获了空间社区的特征。我们还通过利用每次迭代的采样和分组来计算有效且动态的全局交叉注意。最后,为了减轻点云的非异质性,我们提出了一个有效的多尺度令牌化(MST),该标记(MST)提取了尺度不变的令牌以供注意操作。所提出的层次模型以平均准确性实现最新的形状分类,并与先前的分割方法相提并论,同时需要更少的计算。我们提出的体系结构预测分割标签的标签约为以前最有效方法的延迟和参数计数的一半,具有可比的性能。该代码可从https://github.com/yigewang-whu/cloudattention获得。
Processing 3D data efficiently has always been a challenge. Spatial operations on large-scale point clouds, stored as sparse data, require extra cost. Attracted by the success of transformers, researchers are using multi-head attention for vision tasks. However, attention calculations in transformers come with quadratic complexity in the number of inputs and miss spatial intuition on sets like point clouds. We redesign set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation. We propose our local attention unit, which captures features in a spatial neighborhood. We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration. Finally, to mitigate the non-heterogeneity of point clouds, we propose an efficient Multi-Scale Tokenization (MST), which extracts scale-invariant tokens for attention operations. The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods while requiring significantly fewer computations. Our proposed architecture predicts segmentation labels with around half the latency and parameter count of the previous most efficient method with comparable performance. The code is available at https://github.com/YigeWang-WHU/CloudAttention.