论文标题
几乎kähler$ \ mathbb {cp}^3 $中的特殊lagrangians
Special Lagrangians in nearly Kähler $\mathbb{CP}^3$
论文作者
论文摘要
本文从$ \ mathbb {cp}^3 $中探索了特殊的拉格朗日submanifolds,从两个不同的角度看作是近乎kähler的歧管。本质上,使用移动框架设置,并使用$ \ mathrm {su}(2)$ MONMTYPE地图进行外部设置。我们从这两个角度描述了新的同质示例,并将完全测量的特殊拉格朗日submanifolds分类。我们表明,$ \ Mathbb {cp}^3 $中的每个特殊拉格朗日或标志歧管$ \ mathbb {f} _ {1,2}(\ Mathbb {c}^3)$接纳$ \ m m iashrm {surm {surm {su}(2)$ subsoge is homog is homog is as homog is symorations symorations symoraty is symorations。
This article explores special Lagrangian submanifolds in $\mathbb{CP}^3$, viewed as a nearly Kähler manifold, from two different perspectives. Intrinsically, using a moving frame set-up, and extrinsically, using $\mathrm{SU}(2)$ moment-type maps. We describe new homogeneous examples, from both perspectives, and classify totally geodesic special Lagrangian submanifolds. We show that every special Lagrangian in $\mathbb{CP}^3$, or the flag manifold $\mathbb{F}_{1,2}(\mathbb{C}^3)$ admitting a symmetry of an $\mathrm{SU}(2)$ subgroup of nearly Kähler automorphisms is automatically homogeneous.