论文标题

无限耐故障的骨料签名的无嵌套盖系

Nested Cover-Free Families for Unbounded Fault-Tolerant Aggregate Signatures

论文作者

Idalino, Thais Bardini, Moura, Lucia

论文摘要

总体签名用于创建一组数字签名的真实性和完整性的简短证明。但是,集合中的一个签名无效,使整个骨料无效,没有提供有关哪些签名有效的信息。 Hartung等。 (2016年)提出了一种基于组合组测试的易耐断层骨料签名方案。考虑到要汇总的$ n $签名之间的无效签名数量,该方案使用$ d $ over-cover-cover-cover family来确定哪些签名无效。这些组合结构可确保对固定$ d $的汇总签名大小的适度增加,可以达到$ o(\ frac {n} {\ log n})$的最佳压缩比,来自固定的$ d $,来自信息理论界限。由于显式构造具有恒定的压缩比,因此特征总数增长(无界方案)的情况并未令人满意地解决。在本文中,我们依靠我们称为{\ em nested family}的无限型家庭的序列提出了有效的解决方案。我们的某些构造产生的高压缩比接近\ rmv {信息理论绑定} \ todo {最著名的上限}。我们还建议使用$(d,λ)$ - 无封面的家庭,以支持损失多达$λ-1$的零件部分。

Aggregate signatures are used to create one short proof of authenticity and integrity from a set of digital signatures. However, one invalid signature in the set invalidates the entire aggregate, giving no information on which signatures are valid. Hartung et al. (2016) propose a fault-tolerant aggregate signature scheme based on combinatorial group testing. Given a bound $d$ on the number of invalid signatures among $n$ signatures to be aggregated, this scheme uses $d$-cover-free families to determine which signatures are invalid. These combinatorial structures guarantee a moderate increase on the size of the aggregate signature that can reach the best possible compression ratio of $O(\frac{n}{\log n})$, for fixed $d$, coming from an information theoretical bound. The case where the total number of signatures grows dynamically (unbounded scheme) was not satisfactorily solved in their original paper, since explicit constructions had constant compression ratios. In the present paper, we propose efficient solutions for the unbounded scheme, relying on sequences of $d$-cover-free families that we call {\em nested families}. Some of our constructions yield high compression ratio close to \rmv{the information theoretical bound}\todo{the best known upper bound}. We also propose the use of $(d,λ)$-cover-free families to support the loss of up to $λ-1$ parts of the aggregate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源