论文标题

一种增强自动12铅ECG诊断性能的多视图学习方法

A Multi-View Learning Approach to Enhance Automatic 12-Lead ECG Diagnosis Performance

论文作者

Choi, Jae-Won, Hong, Dae-Yong, Jung, Chan, Hwang, Eugene, Park, Sung-Hyuk, Roh, Seung-Young

论文摘要

随着深度学习(DL)的引入,常用心电图(ECG)诊断模型的性能改善。但是,尚未充分研究多个DL组件的各种组合和/或数据增强技术对诊断的作用的影响。这项研究提出了一种基于集合的多视图学习方法,采用ECG增强技术,比传统的12个铅ECG诊断方法获得更高的性能。数据分析结果表明,所提出的模型报告的F1得分为0.840,这表现优于文献中现有的最新方法。

The performances of commonly used electrocardiogram (ECG) diagnosis models have recently improved with the introduction of deep learning (DL). However, the impact of various combinations of multiple DL components and/or the role of data augmentation techniques on the diagnosis have not been sufficiently investigated. This study proposes an ensemble-based multi-view learning approach with an ECG augmentation technique to achieve a higher performance than traditional automatic 12-lead ECG diagnosis methods. The data analysis results show that the proposed model reports an F1 score of 0.840, which outperforms existing state-ofthe-art methods in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源