论文标题

深入研究数据集冷凝的有效梯度匹配

Delving into Effective Gradient Matching for Dataset Condensation

论文作者

Jiang, Zixuan, Gu, Jiaqi, Liu, Mingjie, Pan, David Z.

论文摘要

随着深度学习模型和数据集的迅速扩展,网络培训非常耗时和资源成本。使用小型合成数据集学习并没有在整个数据集中进行培训,而是一种有效的解决方案。广泛的研究已在数据集凝结的方向上进行了探讨,其中梯度匹配可以达到最新的性能。梯度匹配方法在原始和合成数据集上训练时通过匹配梯度直接针对训练动力学。但是,对该方法的原理和有效性的深入研究有限。在这项工作中,我们从全面的角度深入研究了梯度匹配方法,并回答有关匹配的内容,方式和何处的关键问题。我们建议将多级梯度匹配,以涉及类内和类间梯度信息。我们证明距离函数应集中在角度上,考虑到同时延迟过度拟合的幅度。还提出了一种过度拟合的自适应学习步骤策略,以修剪不必要的优化步骤,以提高算法效率。消融和比较实验表明,与先前的工作相比,我们提出的方法表现出优异的准确性,效率和概括。

As deep learning models and datasets rapidly scale up, network training is extremely time-consuming and resource-costly. Instead of training on the entire dataset, learning with a small synthetic dataset becomes an efficient solution. Extensive research has been explored in the direction of dataset condensation, among which gradient matching achieves state-of-the-art performance. The gradient matching method directly targets the training dynamics by matching the gradient when training on the original and synthetic datasets. However, there are limited deep investigations into the principle and effectiveness of this method. In this work, we delve into the gradient matching method from a comprehensive perspective and answer the critical questions of what, how, and where to match. We propose to match the multi-level gradients to involve both intra-class and inter-class gradient information. We demonstrate that the distance function should focus on the angle, considering the magnitude simultaneously to delay the overfitting. An overfitting-aware adaptive learning step strategy is also proposed to trim unnecessary optimization steps for algorithmic efficiency improvement. Ablation and comparison experiments demonstrate that our proposed methodology shows superior accuracy, efficiency, and generalization compared to prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源