论文标题

Schwarzian八面体复发(DSKP方程)I:显式解决方案

The Schwarzian octahedron recurrence (dSKP equation) I: explicit solutions

论文作者

Affolter, Niklas Christoph, de Tilière, Béatrice, Melotti, Paul

论文摘要

我们证明了离散施瓦茨八面体复发的解的明确表达,也称为离散的施瓦兹族KP方程(DSKP),是两个分区函数的比率。每个人都计算关联的两部分图的加权定向二聚体配置,并且等于Kasteleyn矩阵的决定因素。这是基于Speyer对DKP方程的结果或八面体复发[SPE07]的精神。结果之一是DSKP的代数熵为零,这意味着所涉及的多项式学位的生长仅是多项式。分区函数中有取消,我们证明了涉及互补树和森林的替代,取消的显式表达。使用以上所有内容,我们显示了DSKP的Devron属性的几个实例,即,在有限数量的步骤后重复初始数据中的某些奇异性。这有许多用于离散几何系统的应用程序,并且是伴侣论文[ADTM22]的主题。我们还证明了类似于阿兹台克钻石的北极圈的极限形状结果。最后,我们讨论了Adler,Bobenko和Suris [ABS12]分类中所有其他八面体方程的组合。

We prove an explicit expression for the solutions of the discrete Schwarzian octahedron recurrence, also known as the discrete Schwarzian KP equation (dSKP), as the ratio of two partition functions. Each one counts weighted oriented dimer configurations of an associated bipartite graph, and is equal to the determinant of a Kasteleyn matrix. This is in the spirit of Speyer's result on the dKP equation, or octahedron recurrence [Spe07]. One consequence is that dSKP has zero algebraic entropy, meaning that the growth of the degrees of the polynomials involved is only polynomial. There are cancellations in the partition function, and we prove an alternative, cancellation free explicit expression involving complementary trees and forests. Using all of the above, we show several instances of the Devron property for dSKP, i.e., that certain singularities in initial data repeat after a finite number of steps. This has many applications for discrete geometric systems and is the subject of the companion paper [AdTM22]. We also prove limit shape results analogous to the arctic circle of the Aztec diamond. Finally, we discuss the combinatorics of all the other octahedral equations in the classification of Adler, Bobenko and Suris [ABS12].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源