论文标题
通过查询生成动态检索知识,以获得信息丰富的对话生成
Dynamically Retrieving Knowledge via Query Generation for Informative Dialogue Generation
论文作者
论文摘要
知识驱动的对话系统最近取得了非凡的突破。与一般对话系统相比,优越的知识驱动对话系统可以通过预先提供的知识产生更有信息和知识渊博的响应。但是,在实际应用中,对话框系统无法提前提供相应的知识,因为它不能事先知道对话的发展。因此,为了使知识对话体系更加实用,至关重要的是找到一种基于对话历史记录来检索相关知识的方法。为了解决此问题,我们设计了一个名为DRKQG的知识驱动的对话框(通过查询生成动态检索知识以获取信息性对话框响应)。具体而言,系统可以分为两个模块:查询生成模块和对话框生成模块。首先,利用时间感知机制来捕获上下文信息,可以生成查询以通过搜索引擎检索知识。然后,我们集成了复制机制和变压器,该机制允许响应生成模块产生从上下文中得出的响应并检索知识。 LIC2022,语言和情报技术竞赛的实验结果表明,我们的模块在自动评估指标上的大幅度优于基线模型,而BAIDU语言学团队的人类评估表明,我们的系统在实际上正确且知识渊博的是令人印象深刻的结果。
Knowledge-driven dialog system has recently made remarkable breakthroughs. Compared with general dialog systems, superior knowledge-driven dialog systems can generate more informative and knowledgeable responses with pre-provided knowledge. However, in practical applications, the dialog system cannot be provided with corresponding knowledge in advance because it cannot know in advance the development of the conversation. Therefore, in order to make the knowledge dialogue system more practical, it is vital to find a way to retrieve relevant knowledge based on the dialogue history. To solve this problem, we design a knowledge-driven dialog system named DRKQG (Dynamically Retrieving Knowledge via Query Generation for informative dialog response). Specifically, the system can be divided into two modules: the query generation module and the dialog generation module. First, a time-aware mechanism is utilized to capture context information, and a query can be generated for retrieving knowledge through search engine. Then, we integrate the copy mechanism and transformers, which allows the response generation module to produce responses derived from the context and retrieved knowledge. Experimental results at LIC2022, Language and Intelligence Technology Competition, show that our module outperforms the baseline model by a large margin on automatic evaluation metrics, while human evaluation by the Baidu Linguistics team shows that our system achieves impressive results in Factually Correct and Knowledgeable.