论文标题

在双重动力下的纠缠纠缠的增长

Growth of entanglement of generic states under dual-unitary dynamics

论文作者

Foligno, Alessandro, Bertini, Bruno

论文摘要

双单位电路是一类局部相互作用的量子多体系统,当时空和时间的作用交换时,它们也显示出统一动力。这些系统最近成为一个非凡的框架,可以精确地研究多体量子混乱的某些特征。特别是,他们承认一类``可解决的''初始状态在热力学限制中可以访问完整的非平衡动态。这揭示了一个令人惊讶的特性:当在可溶性状态下准备双单位电路时,量子量的量子在量子上互补区域在两个互补区域之间在最大的属性中允许进行固定的属性,而在本地结构中允许进行互补的速度,以至于该属性允许在该属性上进行构图。通用的成对产品状态。但是,在这种情况下,纠缠在有限的时间内是亚最大的,它在无限时间限制中接近最大值。

Dual-unitary circuits are a class of locally-interacting quantum many-body systems displaying unitary dynamics also when the roles of space and time are exchanged. These systems have recently emerged as a remarkable framework where certain features of many-body quantum chaos can be studied exactly. In particular, they admit a class of ``solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics. This reveals a surprising property: when a dual-unitary circuit is prepared in a solvable state the quantum entanglement between two complementary spatial regions grows at the maximal speed allowed by the local structure of the evolution. Here we investigate the fate of this property when the system is prepared in a generic pair-product state. We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit. This statement is proven rigorously for dual-unitary circuits generating high enough entanglement, while it is argued to hold for the entire class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源