论文标题
对CNN转变器的六中心评估与脑电图中与患者无关的癫痫发作检测的信念匹配损失
Six-center Assessment of CNN-Transformer with Belief Matching Loss for Patient-independent Seizure Detection in EEG
论文作者
论文摘要
神经科医生通常通过视觉检查从脑电图(EEG)中鉴定出癫痫发作。这个过程通常很耗时,尤其是对于持续数小时或几天的脑电图记录。为了加快这一过程,可靠,自动化和与患者无关的癫痫发作检测器至关重要。然而,由于癫痫发作在患者和记录设备之间表现出不同的特征,因此开发与患者无关的癫痫发作探测器具有挑战性。在这项研究中,我们建议与患者无关的癫痫发作检测器自动检测头皮脑电图和颅内脑电图(IEEG)的癫痫发作。首先,我们部署了具有变压器和信念匹配损失的卷积神经网络,以检测单渠道脑电图中的癫痫发作。接下来,我们从通道级输出中提取区域特征,以检测多通道脑电图中的癫痫发作。最后,我们将后处理过滤器应用于细分级输出,以确定多通道EEG中癫痫发作的起点和终点。最后,我们将最小重叠评估评分作为评估指标,以说明检测和癫痫发作之间的最小重叠,从而改善现有评估指标。我们在Temple University Hospital Deizure(TUH-SZ)数据集上训练了癫痫发作探测器,并在五个独立的EEG数据集上进行了评估。我们使用以下指标评估系统:灵敏度(SEN),精度(PRE)以及平均和中位假阳性每小时(AFPR/H和MFPR/H)。在四个成人头皮EEG和IEEG数据集中,我们获得了0.617-1.00的SEN,PROS为0.534-1.00,AFPR/H为0.425-2.002,MFPR/H为0-1.003。所提出的癫痫发作检测器可以检测成人脑电图的癫痫发作,并且需要少于15秒钟,持续30分钟的脑电图。因此,该系统可以帮助临床医生可靠地迅速识别癫痫发作,从而为制定适当的治疗提供了更多时间。
Neurologists typically identify epileptic seizures from electroencephalograms (EEGs) by visual inspection. This process is often time-consuming, especially for EEG recordings that last hours or days. To expedite the process, a reliable, automated, and patient-independent seizure detector is essential. However, developing a patient-independent seizure detector is challenging as seizures exhibit diverse characteristics across patients and recording devices. In this study, we propose a patient-independent seizure detector to automatically detect seizures in both scalp EEG and intracranial EEG (iEEG). First, we deploy a convolutional neural network with transformers and belief matching loss to detect seizures in single-channel EEG segments. Next, we extract regional features from the channel-level outputs to detect seizures in multi-channel EEG segments. At last, we apply postprocessing filters to the segment-level outputs to determine seizures' start and end points in multi-channel EEGs. Finally, we introduce the minimum overlap evaluation scoring as an evaluation metric that accounts for minimum overlap between the detection and seizure, improving upon existing assessment metrics. We trained the seizure detector on the Temple University Hospital Seizure (TUH-SZ) dataset and evaluated it on five independent EEG datasets. We evaluate the systems with the following metrics: sensitivity (SEN), precision (PRE), and average and median false positive rate per hour (aFPR/h and mFPR/h). Across four adult scalp EEG and iEEG datasets, we obtained SEN of 0.617-1.00, PRE of 0.534-1.00, aFPR/h of 0.425-2.002, and mFPR/h of 0-1.003. The proposed seizure detector can detect seizures in adult EEGs and takes less than 15s for a 30 minutes EEG. Hence, this system could aid clinicians in reliably identifying seizures expeditiously, allocating more time for devising proper treatment.