论文标题

$ c_n \ square p_m $的支配号码$ n \ equiv 2 \ pmod {5} $

The Domination Number of $C_n\square P_m$ for $n\equiv 2\pmod{5}$

论文作者

Guichard, David R.

论文摘要

我们使用动态编程算法来建立一个新的下界,上面是$ c_n \ square p_m $的完整圆柱网格图的统治数,即路径和周期的笛卡尔产物,当$ n \ equiv 2 \ equiv 2 \ equiv 2 \ pmod {5} $,我们建立了一个新的上限等于较低的限制,从而构成了较低的限制,因此计算了这些图形的数字。

We use a dynamic programming algorithm to establish a new lower bound on the domination number of complete cylindrical grid graphs of the form $C_n\square P_m$, that is, the Cartesian product of a path and a cycle, when $n\equiv 2\pmod{5}$, and we establish a new upper bound equal to the lower bound, thus computing the exact domination number for these graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源