论文标题
通过流量I:理论相对较大的Anosov表示
Relatively Anosov representations via flows I: theory
论文作者
论文摘要
这是两篇论文系列中的第一篇,该论文使用Labourie和Guichard-Wienhard介绍的Anosov表示的原始“捆绑捆绑流”的定义来开发相对anosov表示的理论。在本文中,我们将主要关注一般理论,而在第二篇论文中,我们将重点介绍示例。在相对双曲线组的情况下,该束结构涉及几种选择:模型Gromov-Hyperbolic空间该组的作用以及束纤维上的规范。我们使用这些捆绑包的属性来定义一个相对良好的Anosov表示的子类,我们称其为统一相对较小的Anosov。我们还证明了稳定性结果。
This is the first in a series of two papers that develops a theory of relatively Anosov representations using the original "contracting flow on a bundle" definition of Anosov representations introduced by Labourie and Guichard-Wienhard. In this paper we will mostly focus on general theory while in the second paper we will focus on examples. In the case of relatively hyperbolic groups, this bundle construction involves several choices: the model Gromov-hyperbolic space the group acts on and the norms on the fibers of the bundle. We use the properties of these bundles to define a subclass of nicely behaved relatively Anosov representations, which we call uniformly relatively Anosov. We also prove a stability result.