论文标题
分叉:通过图特征量化的增压GNN训练
BiFeat: Supercharge GNN Training via Graph Feature Quantization
论文作者
论文摘要
图形神经网络(GNN)是具有无核数据的应用的有前途的方法。但是,具有数亿节点的大规模图表上的培训GNN既是资源又是耗时的。与DNN不同,GNN通常具有更大的内存足迹,因此GPU内存能力和PCIE带宽是GNN培训中的主要资源瓶颈。为了解决此问题,我们提出分叉:一种图形量化方法,通过显着减少内存足迹和PCIE带宽要求来加速GNN训练,以便GNN可以充分利用GPU计算功能。我们的主要见解是,与DNN不同,GNN不太容易发生量化引起的输入特征的信息丢失。我们确定图形特征量化的主要准确性影响因素,从理论上证明,分叉训练会收敛到一个网络,在该网络中,损失在未压缩网络的最佳损失的$ε$之内。我们使用几种流行的GNN模型和数据集对分叉进行了广泛的评估,包括最大的公共图数据集MAG240M上的图形。结果表明,分叉达到30以上的压缩率,并在边际准确性损失的情况下提高了GNN训练速度200%-320%。特别是,分叉在一小时内仅使用四个GPU在MAG240M上的训练图来实现记录。
Graph Neural Networks (GNNs) is a promising approach for applications with nonEuclidean data. However, training GNNs on large scale graphs with hundreds of millions nodes is both resource and time consuming. Different from DNNs, GNNs usually have larger memory footprints, and thus the GPU memory capacity and PCIe bandwidth are the main resource bottlenecks in GNN training. To address this problem, we present BiFeat: a graph feature quantization methodology to accelerate GNN training by significantly reducing the memory footprint and PCIe bandwidth requirement so that GNNs can take full advantage of GPU computing capabilities. Our key insight is that unlike DNN, GNN is less prone to the information loss of input features caused by quantization. We identify the main accuracy impact factors in graph feature quantization and theoretically prove that BiFeat training converges to a network where the loss is within $ε$ of the optimal loss of uncompressed network. We perform extensive evaluation of BiFeat using several popular GNN models and datasets, including GraphSAGE on MAG240M, the largest public graph dataset. The results demonstrate that BiFeat achieves a compression ratio of more than 30 and improves GNN training speed by 200%-320% with marginal accuracy loss. In particular, BiFeat achieves a record by training GraphSAGE on MAG240M within one hour using only four GPUs.