论文标题

与条件可逆神经网络具有内容感知的差异隐私

Content-Aware Differential Privacy with Conditional Invertible Neural Networks

论文作者

Tölle, Malte, Köthe, Ullrich, André, Florian, Meder, Benjamin, Engelhardt, Sandy

论文摘要

通过向每个数据示例添加校准的噪声来保护个人在数据集中的个人隐私方面,出现了差异隐私(DP)。尽管对分类数据的应用很简单,但在图像上下文中的可用性受到限制。与分类数据相反,图像的含义是相邻像素的空间相关性固有的,使噪声的简单应用不可行。可逆的神经网络(INN)表现出出色的生成性能,同时仍提供量化确切可能性的能力。他们的原理基于将复杂的分布转换为一个简单的分布,例如图像进入球形高斯。我们假设在旅馆的潜在空间中添加噪声可以实现差异化的私有图像修改。操纵潜在空间会导致修改的图像,同时保留重要的细节。此外,通过对数据集提供的元数据进行调节,我们旨在使对下游任务(例如分类)诸如未触及之类的下游任务的维度很重要,同时更改了其他可能包含识别信息的其他部分。我们称我们的方法意识到差异隐私(CADP)。我们对公共基准测试数据集以及专用医疗进行实验。此外,我们还展示了方法对分类数据的普遍性。源代码可在https://github.com/cardio-ai/cadp上公开获得。

Differential privacy (DP) has arisen as the gold standard in protecting an individual's privacy in datasets by adding calibrated noise to each data sample. While the application to categorical data is straightforward, its usability in the context of images has been limited. Contrary to categorical data the meaning of an image is inherent in the spatial correlation of neighboring pixels making the simple application of noise infeasible. Invertible Neural Networks (INN) have shown excellent generative performance while still providing the ability to quantify the exact likelihood. Their principle is based on transforming a complicated distribution into a simple one e.g. an image into a spherical Gaussian. We hypothesize that adding noise to the latent space of an INN can enable differentially private image modification. Manipulation of the latent space leads to a modified image while preserving important details. Further, by conditioning the INN on meta-data provided with the dataset we aim at leaving dimensions important for downstream tasks like classification untouched while altering other parts that potentially contain identifying information. We term our method content-aware differential privacy (CADP). We conduct experiments on publicly available benchmarking datasets as well as dedicated medical ones. In addition, we show the generalizability of our method to categorical data. The source code is publicly available at https://github.com/Cardio-AI/CADP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源