论文标题

作为量子运算符的宇宙常数

On the cosmological constant as a quantum operator

论文作者

de Cordoba, P. Fernandez, Torrome, R. Gallego, Gavasso, S., Isidro, J. M.

论文摘要

我们将宇宙学呈指数膨胀的flrw时空中的宇宙流体视为非依次主义施罗丁格场的概率流体。标量Schroedinger粒子如此描述的质量等于宇宙的总(Baryonic Plus深色)物质含量。该程序允许通过非遗体量子理论的操作员形式主义来描述宇宙流体。在径向对称性的假设下,与$ 1/r^2 $成比例的量子操作员表示宇宙常数$λ$。实验测量的$λ$的值是$ 1/r^2 $的特征值之一。接下来,我们解决重力潜力$ u(r)$的泊松方程$ \ nabla^2u =λ$,宇宙常数$λ(r)= 1/r^2 $扮演源术语的角色。事实证明,$ u(r)$除了标准的牛顿潜力$ 1/r $之外,还具有与$ \ ln r $成正比的更正项,与经过修改的牛顿动力学理论中出现的校正项相同。

We regard the cosmological fluid within an exponentially expanding FLRW spacetime as the probability fluid of a nonrelativistic Schroedinger field. The scalar Schroedinger particle so described has a mass equal to the total (baryonic plus dark) matter content of the Universe. This procedure allows a description of the cosmological fluid by means of the operator formalism of nonrelativistic quantum theory. Under the assumption of radial symmetry, a quantum operator proportional to $1/r^2$ represents the cosmological constant $Λ$. The experimentally measured value of $Λ$ is one of the eigenvalues of $1/r^2$. Next we solve the Poisson equation $\nabla^2U=Λ$ for the gravitational potential $U(r)$, with the cosmological constant $Λ(r)=1/r^2$ playing the role of a source term. It turns out that $U(r)$ includes, besides the standard Newtonian potential $1/r$, a correction term proportional to $\ln r$ identical to that appearing in theories of modified Newtonian dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源