论文标题
卫星图像的图像增强
Image Augmentation for Satellite Images
论文作者
论文摘要
这项研究建议使用生成模型(GAN)来增强欧洲裔数据集用于土地使用和土地覆盖(LULC)分类任务。我们使用DCGAN和WGAN-GP为数据集中的每个类生成图像。然后,我们探讨了在每种情况下将原始数据集增加约10%的效果对模型性能。 GAN体系结构的选择似乎对模型性能没有明显的影响。但是,几何增强和gan生成图像的结合改善了基线结果。我们的研究表明,GANS的增强可以改善卫星图像上深层分类模型的普遍性。
This study proposes the use of generative models (GANs) for augmenting the EuroSAT dataset for the Land Use and Land Cover (LULC) Classification task. We used DCGAN and WGAN-GP to generate images for each class in the dataset. We then explored the effect of augmenting the original dataset by about 10% in each case on model performance. The choice of GAN architecture seems to have no apparent effect on the model performance. However, a combination of geometric augmentation and GAN-generated images improved baseline results. Our study shows that GANs augmentation can improve the generalizability of deep classification models on satellite images.