论文标题
带有最大多视熵编码的预训练通用轨迹嵌入
Pre-training General Trajectory Embeddings with Maximum Multi-view Entropy Coding
论文作者
论文摘要
时空轨迹提供了有关运动和旅行行为的有价值信息,从而实现了各种下游任务,从而使现实世界中的应用程序供电。学习轨迹嵌入可以改善任务性能,但可能会产生高计算成本,并面临有限的培训数据可用性。预训练通过特殊构造的借口任务来学习通用嵌入,从而使无标记的数据学习。现有的预训练方法面临(i)由于借口任务所产生的某些下游任务的偏见而在学习一般嵌入方面的困难,(ii)捕获旅行语义和时空相关性的局限性,以及(iii)长,不规则采样的轨迹的复杂性。 为了应对这些挑战,我们提出了最大的多视图轨迹熵编码(MMTEC),用于学习一般和全面的轨迹嵌入。我们介绍了一个借口任务,可减少预训练的轨迹嵌入中的偏见,从而产生对各种下游任务有用的嵌入。我们还提出了一个基于注意力的离散编码器和基于神经CDE的连续编码器,该编码器分别从嵌入式中的轨迹提取和表示旅行行为和连续的时空相关性。在两个现实世界数据集和三个下游任务上进行的广泛实验提供了对我们提案的设计属性的洞察力,并表明它能够比现有的轨迹嵌入方法表现优于现有的。
Spatio-temporal trajectories provide valuable information about movement and travel behavior, enabling various downstream tasks that in turn power real-world applications. Learning trajectory embeddings can improve task performance but may incur high computational costs and face limited training data availability. Pre-training learns generic embeddings by means of specially constructed pretext tasks that enable learning from unlabeled data. Existing pre-training methods face (i) difficulties in learning general embeddings due to biases towards certain downstream tasks incurred by the pretext tasks, (ii) limitations in capturing both travel semantics and spatio-temporal correlations, and (iii) the complexity of long, irregularly sampled trajectories. To tackle these challenges, we propose Maximum Multi-view Trajectory Entropy Coding (MMTEC) for learning general and comprehensive trajectory embeddings. We introduce a pretext task that reduces biases in pre-trained trajectory embeddings, yielding embeddings that are useful for a wide variety of downstream tasks. We also propose an attention-based discrete encoder and a NeuralCDE-based continuous encoder that extract and represent travel behavior and continuous spatio-temporal correlations from trajectories in embeddings, respectively. Extensive experiments on two real-world datasets and three downstream tasks offer insight into the design properties of our proposal and indicate that it is capable of outperforming existing trajectory embedding methods.