论文标题

$ l^p $ - 伪差异操作员在同质树上

$L^p$-boundedness of pseudo-differential operators on homogeneous trees

论文作者

Rana, Tapendu, Rano, Sumit Kumar

论文摘要

本文的目的是研究$ l^{p} $ - 伪差异操作员在同质树$ \ mathfrak {x} $上的界限。对于$ p \ in(1,2)$,我们在$ \ mathfrak {x} $上的pseudo-differential运算符与整数$ \ mathbb {z z} $之间建立了$ l^{p} $之间的连接。我们还证明了Calderon-vaillancourt定理的类似物,在(1,\ infty)\ setMinus \ {2 \} $中,以$ p \ in(1,\ infty)\ in(1,\ infty)$。

The aim of this article is to study the $L^{p}$-boundedness of pseudo-differential operators on a homogeneous tree $ \mathfrak{X} $. For $p\in (1,2)$, we establish a connection between the $L^{p}$-boundedness of the pseudo-differential operators on $ \mathfrak{X} $ and that on the group of integers $\mathbb{Z}$. We also prove an analogue of the Calderon-Vaillancourt theorem in the setting of homogeneous trees, for $p\in(1,\infty)\setminus\{2\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源