论文标题
分数berezinskii-kosterlitz-从重新归一化的角度来看
Fractonic Berezinskii-Kosterlitz-Thouless transition from a renormalization group perspective
论文作者
论文摘要
缺陷的扩散是一种允许拓扑相变的机制。对于XY模型的二维,发现了这种相变,位于Berezinskii-Kosterlitz-thouless(BKT)通用类别中。使用重新归一化组分析可以找到过渡点。我们应用重新归一化的组参数来确定三维Plaquette-Dimer模型的BKT转变的性质,该模型是一种表现出分数迁移率约束的模型。我们表明,该分析的重要部分需要修改的维数分析,以改变粗粒时缩放维度的解释。使用此修改的维尺寸分析,我们计算模型的β函数,并预测有限的临界值,在该临界值之上,分形相融化并增殖偶极子。重要的是,通过重新归一化的组分析可以找到过渡点,该分析解释了分数模型的特征紫外线/IR混合现象。
Proliferation of defects is a mechanism that allows for topological phase transitions. Such a phase transition is found in two dimensions for the XY-model, which lies in the Berezinskii-Kosterlitz-Thouless (BKT) universality class. The transition point can be found using renormalization group analysis. We apply renormalization group arguments to determine the nature of BKT transitions for the three-dimensional plaquette-dimer model, which is a model that exhibits fractonic mobility constraints. We show that an important part of this analysis demands a modified dimensional analysis that changes the interpretation of scaling dimensions upon coarse-graining. Using this modified dimensional analysis we compute the beta functions of the model and predict a finite critical value above which the fractonic phase melts, proliferating dipoles. Importantly, the transition point is found through a renormalization group analysis that accounts for the phenomenon of UV/IR mixing, characteristic of fractonic models.