论文标题

单侧接触问题的平行算法

A parallel algorithm for unilateral contact problems

论文作者

Guillamet, G., Rivero, M., Zavala-Aké, M., Vázquez, M., Houzeaux, G., Oller, S.

论文摘要

在本文中,我们介绍了一种新型的平行触点算法,旨在在基于高性能计算的超级计算机中有效运行。在多物理有限元代码中,其计算实现特别强调。该算法基于部分Dirichlet-Neumann边界条件的方法,并且能够在整个平行框架中刚性和可变形物体之间的数值求解。其独特的特征是,接触被作为一个耦合问题,在这种问题中,接触物体以交错的方式分别处理。然后,通过在高斯 - 塞德尔策略之后通过在触点界面上交换边界条件来执行耦合。为了验证该算法,我们通过将提出的解决方案与理论和其他数值解进行了比较,进行了几项基准测试。最后,我们在实际影响测试中评估了所提出的算法的并行性能,以显示其用于大规模应用的功能。

In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High-Performance Computing based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite element code. The algorithm is based on the method of partial Dirichlet-Neumann boundary conditions and is capable to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework. Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions at the contact interface following a Gauss-Seidel strategy. To validate this algorithm we conducted several benchmark tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源