论文标题

流体结构相互作用的浸入式植物动力学模型,该模型涉及材料损害和失败

An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure

论文作者

Kim, Keon Ho, Bhalla, Amneet P. S., Griffith, Boyce E.

论文摘要

本文开发和基准测试了一种浸入的植入动力学方法,以模拟流体结构互动框架内高弹性材料的变形,损害和失败。浸入的植物动力学方法描述了一种不可压缩的结构,该结构浸入了粘性不可压缩的液体中。它表达了Eulerian形式中的动量方程和不可压缩的约束,并以拉格朗日形式描述了结构运动和结果力。欧拉和拉格朗日变量之间的耦合是通过与标准浸入边界方法中的Dirac Delta函数内核来实现的。我们的方法和常规沉浸式边界方法之间的主要区别在于,我们使用植入动力学,而不是经典的连续性力学来确定结构力。我们专注于非常见的基于状态的动力学材料描述,这些描述使我们能够使用本构的通信框架,该框架可以利用良好的特征性的非线性构成模型的软材料。使用非线性不可压缩弹性的基准问题,将我们方法的收敛性和准确性与常规有限元方法进行了比较。我们证明,浸入的植物动力学方法具有可比的精度,而结构性自由度相似,可以选择多种选择peridynegic horizo​​n的大小。我们还证明该方法可以生成流体驱动物质损伤生长,裂纹形成和传播以及在较大变形下破裂的网格限制模拟。

This paper develops and benchmarks an immersed peridynamics method to simulate the deformation, damage, and failure of hyperelastic materials within a fluid-structure interaction framework. The immersed peridynamics method describes an incompressible structure immersed in a viscous incompressible fluid. It expresses the momentum equation and incompressibility constraint in Eulerian form, and it describes the structural motion and resultant forces in Lagrangian form. Coupling between Eulerian and Lagrangian variables is achieved by integral transforms with Dirac delta function kernels, as in standard immersed boundary methods. The major difference between our approach and conventional immersed boundary methods is that we use peridynamics, instead of classical continuum mechanics, to determine the structural forces. We focus on non-ordinary state-based peridynamic material descriptions that allow us to use a constitutive correspondence framework that can leverage well characterized nonlinear constitutive models of soft materials. The convergence and accuracy of our approach are compared to both conventional and immersed finite element methods using widely used benchmark problems of nonlinear incompressible elasticity. We demonstrate that the immersed peridynamics method yields comparable accuracy with similar numbers of structural degrees of freedom for several choices of the size of the peridynamic horizon. We also demonstrate that the method can generate grid-converged simulations of fluid-driven material damage growth, crack formation and propagation, and rupture under large deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源