论文标题

面向内容的学习图像压缩

Content-oriented learned image compression

论文作者

Li, Meng, Gao, Shangyin, Feng, Yihui, Shi, Yibo, Wang, Jing

论文摘要

近年来,随着深度神经网络的发展,端到端优化的图像压缩已取得了重大进展,并在速率延伸性能方面超出了经典方法。但是,大多数基于学习的图像压缩方法都是未标记的,在优化模型时不会考虑图像语义或内容。实际上,人眼对不同内容具有不同的敏感性,因此还需要考虑图像内容。在本文中,我们提出了一种面向内容的图像压缩方法,该方法处理具有不同策略的不同类型的图像内容。广泛的实验表明,与最先进的端到端学习的图像压缩方法或经典方法相比,所提出的方法可实现竞争性的主观结果。

In recent years, with the development of deep neural networks, end-to-end optimized image compression has made significant progress and exceeded the classic methods in terms of rate-distortion performance. However, most learning-based image compression methods are unlabeled and do not consider image semantics or content when optimizing the model. In fact, human eyes have different sensitivities to different content, so the image content also needs to be considered. In this paper, we propose a content-oriented image compression method, which handles different kinds of image contents with different strategies. Extensive experiments show that the proposed method achieves competitive subjective results compared with state-of-the-art end-to-end learned image compression methods or classic methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源