论文标题

局部空间时间常数平均曲率和恒定膨胀叶子

Local space time constant mean curvature and constant expansion foliations

论文作者

Metzger, Jan, Diaz, Alejandro Peñuela

论文摘要

受小球体限制的启发,我们研究了具有规定的平均曲率的表面的局部叶子。遵循YE在1991年使用的策略来研究局部恒定平均曲率叶子,我们在n+1维歧管中使用Lyapunov Schmidt减少,配备了对称的2 tensor来构造围绕一个点的叶子,证明其独特性并表现出其不存在的条件。具体来说,我们研究了两个叶面条件。首先,我们考虑恒定的时空平均曲率表面。 Cederbaum和Sakovich使用了这些叶子来表征一般相对论的质量中心。其次,我们研究恒定膨胀表面的局部叶子。

Inspired by the small sphere-limit for quasi-local energy we study local foliations of surfaces with prescribed mean curvature. Following the strategy used by Ye in 1991 to study local constant mean curvature foliations, we use a Lyapunov Schmidt reduction in an n+1 dimensional manifold equipped with a symmetric 2-tensor to construct the foliations around a point, prove their uniqueness and show their nonexistence conditions. To be specific, we study two foliation conditions. First we consider constant space-time mean curvature surfaces. These foliations were used by Cederbaum and Sakovich to characterize the center of mass in general relativity. Second, we study local foliations of constant expansion surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源