论文标题

量化天文学和物理中未知的未知数

Quantification of Unknown Unknowns in Astronomy and Physics

论文作者

Hatfield, Peter

论文摘要

不确定性定量是天文学和物理学的关键部分;科学研究人员试图尽可能地使用贝叶斯框架对数据中的统计和系统不确定性进行建模。然后可能会对由此产生的不确定性量化做出决定 - 也许是否相信某个理论,或者是否采取某些行动。但是,众所周知,大多数统计主张都应在上下文上采取。即使将某些模型排除在很高的信心中,研究人员通常会意识到可能存在未考虑的系统学,因此通常需要从多个独立来源进行确认,然后才能真正接受任何新颖的结果。在本文中,我们比较了天文学文献中试图量化这些“未知未知数”的两种方法 - 特别是试图在参数估计问题的后部产生逼真的厚尾巴,这说明了可能存在很大的未知效果。我们在一系列案例研究上测试了这些方法,并讨论在对科学数据的恶意干扰的情况下,这些方法将如何鲁棒。

Uncertainty quantification is a key part of astronomy and physics; scientific researchers attempt to model both statistical and systematic uncertainties in their data as best as possible, often using a Bayesian framework. Decisions might then be made on the resulting uncertainty quantification -- perhaps whether or not to believe in a certain theory, or whether to take certain actions. However it is well known that most statistical claims should be taken contextually; even if certain models are excluded at a very high degree of confidence, researchers are typically aware there may be systematics that were not accounted for, and thus typically will require confirmation from multiple independent sources before any novel results are truly accepted. In this paper we compare two methods in the astronomical literature that seek to attempt to quantify these `unknown unknowns' -- in particular attempting to produce realistic thick tails in the posterior of parameter estimation problems, that account for the possible existence of very large unknown effects. We test these methods on a series of case studies, and discuss how robust these methods would be in the presence of malicious interference with the scientific data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源