论文标题
为什么准确性不够:需要在对象检测中保持一致性
Why Accuracy Is Not Enough: The Need for Consistency in Object Detection
论文作者
论文摘要
对象探测器对于许多现代计算机视觉应用至关重要。但是,即使是最新的对象探测器也不是完美的。在两个看起来与人眼类似的图像上,同一探测器可以做出不同的预测,因为摄像机传感器噪声和照明变化等小图像变形。这个问题称为不一致。现有的准确性指标不能正确解释不一致的情况,并且在该领域的类似工作仅针对人造图像扭曲的改善。因此,我们提出了一种使用非人工视频框架来测量对象检测一致性的方法,随着时间的流逝,跨帧。使用此方法,我们表明,来自多个对象跟踪挑战的不同视频数据集,现代对象检测器的一致性范围从83.2%到97.1%。最后,我们表明,应用图像失真校正(例如.WEBP图像压缩和UNSHARP掩盖)可以提高一致性多达5.1%,而准确性不会损失。
Object detectors are vital to many modern computer vision applications. However, even state-of-the-art object detectors are not perfect. On two images that look similar to human eyes, the same detector can make different predictions because of small image distortions like camera sensor noise and lighting changes. This problem is called inconsistency. Existing accuracy metrics do not properly account for inconsistency, and similar work in this area only targets improvements on artificial image distortions. Therefore, we propose a method to use non-artificial video frames to measure object detection consistency over time, across frames. Using this method, we show that the consistency of modern object detectors ranges from 83.2% to 97.1% on different video datasets from the Multiple Object Tracking Challenge. We conclude by showing that applying image distortion corrections like .WEBP Image Compression and Unsharp Masking can improve consistency by as much as 5.1%, with no loss in accuracy.