论文标题

非线性潜在力模型的模型预测控制:一种基于方案的方法

Model Predictive Control of Nonlinear Latent Force Models: A Scenario-Based Approach

论文作者

Woodruff, Thomas, Askari, Iman, Wang, Guanghui, Fang, Huazhen

论文摘要

在机器人技术领域中,对非线性不确定系统的控制是一个普遍的挑战。非线性潜在力模型结合了以高斯流程为特征的潜在不确定性,具有有效代表此类系统的希望,我们专注于这项工作的控制设计。为了实现设计,我们采用了高斯过程的状态空间表示来重塑非线性潜在力模型,从而建立了同时预测未来状态和不确定性的能力。使用此功能,制定了随机模型预测控制问题。为了得出问题的计算算法,我们使用基于方案的方法来制定随机优化的确定性近似。我们通过基于自动驾驶汽车的运动计划的仿真研究评估了最终方案的模型预测控制方法,该研究表现出很大的有效性。拟议的方法可以在其他各种机器人技术应用中找到前瞻性使用。

Control of nonlinear uncertain systems is a common challenge in the robotics field. Nonlinear latent force models, which incorporate latent uncertainty characterized as Gaussian processes, carry the promise of representing such systems effectively, and we focus on the control design for them in this work. To enable the design, we adopt the state-space representation of a Gaussian process to recast the nonlinear latent force model and thus build the ability to predict the future state and uncertainty concurrently. Using this feature, a stochastic model predictive control problem is formulated. To derive a computational algorithm for the problem, we use the scenario-based approach to formulate a deterministic approximation of the stochastic optimization. We evaluate the resultant scenario-based model predictive control approach through a simulation study based on motion planning of an autonomous vehicle, which shows much effectiveness. The proposed approach can find prospective use in various other robotics applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源