论文标题

生成隐志网络

Generative Steganography Network

论文作者

Wei, Ping, Li, Sheng, Zhang, Xinpeng, Luo, Ge, Qian, Zhenxing, Zhou, Qing

论文摘要

隐肌通常将覆盖媒体修改为嵌入秘密数据。最近出现了一种称为生成隐志(GS)的新型隐志方法,其中直接从秘密数据中生成了Stego图像(包含秘密数据的图像)而无需覆盖媒体。但是,现有的GS计划经常因其表现不佳而受到批评。在本文中,我们提出了一个先进的生成隐志网络(GSN),该网络可以在不使用封面图像的情况下生成逼真的Stego图像。我们首先在GS中引入了互信息机制,这有助于实现高秘密提取精度。我们的模型包含四个子网络,即图像生成器($ g $),一个歧视器($ d $),steganalyzer($ s $)和数据提取器($ e $)。 $ d $和$ s $充当两个对抗歧视器,以确保生成的sevo图像的视觉质量和安全性。 $ e $是从生成的Stego图像中提取隐藏的秘密。发电机$ g $灵活地构建以合成具有不同输入的封面图像。它通过隐藏在普通发电机中生成Stego图像的功能来促进秘密通信。一个名为Secret Block的模块旨在将秘密数据隐藏在图像生成过程中的特征图中,并通过该图像实现了高隐藏的容量和图像保真度。此外,开发了一种新型的分层梯度衰减(HGD)技能来抵抗肌分析检测。实验证明了我们工作优于现有方法。

Steganography usually modifies cover media to embed secret data. A new steganographic approach called generative steganography (GS) has emerged recently, in which stego images (images containing secret data) are generated from secret data directly without cover media. However, existing GS schemes are often criticized for their poor performances. In this paper, we propose an advanced generative steganography network (GSN) that can generate realistic stego images without using cover images. We firstly introduce the mutual information mechanism in GS, which helps to achieve high secret extraction accuracy. Our model contains four sub-networks, i.e., an image generator ($G$), a discriminator ($D$), a steganalyzer ($S$), and a data extractor ($E$). $D$ and $S$ act as two adversarial discriminators to ensure the visual quality and security of generated stego images. $E$ is to extract the hidden secret from generated stego images. The generator $G$ is flexibly constructed to synthesize either cover or stego images with different inputs. It facilitates covert communication by concealing the function of generating stego images in a normal generator. A module named secret block is designed to hide secret data in the feature maps during image generation, with which high hiding capacity and image fidelity are achieved. In addition, a novel hierarchical gradient decay (HGD) skill is developed to resist steganalysis detection. Experiments demonstrate the superiority of our work over existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源