论文标题

同型翻转分叉附近的全球分叉和混乱的级联:一个案例研究

Cascades of Global Bifurcations and Chaos near a Homoclinic Flip Bifurcation: A Case Study

论文作者

Giraldo, Andrus, Krauskopf, Bernd, Osinga, Hinke M.

论文摘要

我们研究了情况〜\ textbf {c}的同层面翻转分叉,其中具有实际特征值从可定位到不可定向的鞍形轨迹到鞍平衡的同型轨道变化。这种分叉是二次的二拟构态,它是真正鞍形的同层分叉的最低的编词,以以(悬挂)smale马蹄铁和奇怪的吸引者的形式产生混乱的行为。我们提供了一个详细的数值案例研究,介绍了鞍座平衡的全球稳定和不稳定流形和分叉周期性轨道如何接近这种分叉的相互作用。这是理解同型翻转分叉的通用情况的迈出的一步,该案例始于对简单案例\ textbf {a}和\ textbf {b}的研究。在由于Sandstede引起的三维矢量场中,我们以前所未有的细节来计算中央consimimension-Two-Two分叉的两参数分叉图中的相关分叉曲线。我们介绍了不变的歧管的代表性图像,该图像在相位空间和与合适的球体相交集中进行了边界值问题设置计算。通过这种方式,我们能够识别出许多层层的同层分叉,这些分叉积累在特定的codimension-One杂斜方面分叉之间,平衡和各种鞍形周期性轨道之间。我们的计算从理论中证实了什么,但也表明了以前未考虑的分叉现象的存在。具体而言,我们在参数平面中识别Smale-Horseshoe区域的边界,其中一种创建了一种类似于Rössler吸引子的奇怪吸引子。绕组数的计算揭示了更广泛的参数平面中复杂的总体分叉结构,该结构涉及与所谓的同层气泡相关的许多其他进一步的同层面翻转分叉。

We study a homoclinic flip bifurcation of case~\textbf{C}, where a homoclinic orbit to a saddle equilibrium with real eigenvalues changes from being orientable to nonorientable. This bifurcation is of codimension two, and it is the lowest codimension for a homoclinic bifurcation of a real saddle to generate chaotic behavior in the form of (suspended) Smale horseshoes and strange attractors. We present a detailed numerical case study of how global stable and unstable manifolds of the saddle equilibrium and of bifurcating periodic orbits interact close to such bifurcation. This is a step forward in understanding the generic cases of homoclinic flip bifurcations, which started with the study of the simpler cases \textbf{A} and \textbf{B}. In a three-dimensional vector field due to Sandstede, we compute relevant bifurcation curves in the two-parameter bifurcation diagram near the central codimension-two bifurcation in unprecedented detail. We present representative images of invariant manifolds, computed with a boundary value problem setup, both in phase space and as intersection sets with a suitable sphere. In this way, we are able to identify infinitely many cascades of homoclinic bifurcations that accumulate on specific codimension-one heteroclinic bifurcations between an equilibrium and various saddle periodic orbits. Our computations confirm what is known from theory but also show the existence of bifurcation phenomena that were not considered before. Specifically, we identify the boundaries of the Smale--horseshoe region in the parameter plane, one of which creates a strange attractor that resembles the Rössler attractor. The computation of a winding number reveals a complicated overall bifurcation structure in the wider parameter plane that involves infinitely many further homoclinic flip bifurcations associated with so-called homoclinic bubbles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源