论文标题
氢与氦对电磁黑洞可观察的影响
Effects of Hydrogen vs. Helium on Electromagnetic Black Hole Observables
论文作者
论文摘要
已知我们的银河系中心和附近的Messier 87包含超大质量黑洞,这些黑洞支持积聚流向电磁频谱的辐射。尽管积聚气体的组成尚不清楚,但它可能是电离氢和氦气的混合物。我们使用一个简单的分析模型和一套数值一般相对论磁性磁动力学模拟模拟来研究源的偏振图像和光谱能量分布如何受增强物质的氢/氦含量的影响。我们的目标是确定一般趋势,而不是进行定量的精确预测,因为不可能充分探索吸积模型的参数空间。如果固定离子与电子温度比,则增加氦分数会增加气体温度;为了匹配观测通量密度约束,必须降低电子和磁场强度的数量密度。在我们的数值模拟中,发射从低血浆β的区域转移到高血浆β-既改变了图像的形态,又降低了光曲线的变异性 - 尤其是在强烈的磁化模型中,其发射距离靠近中平面。在极化图像中,我们发现模型气体组成会影响线性极化的(DE)炒程度的程度,因此影响了分辨线性极化分数的估计值。我们还发现,氦结的光谱在较高的频率下达到峰值,并表现出较高的亮度。我们得出的结论是,气体成分可能在黑洞积聚的预测模型中起重要作用。
The centers of our galaxy and the nearby Messier 87 are known to contain supermassive black holes, which support accretion flows that radiate across the electromagnetic spectrum. Although the composition of the accreting gas is unknown, it is likely a mix of ionized hydrogen and helium. We use a simple analytic model and a suite of numerical general relativistic magnetohydrodynamic accretion simulations to study how polarimetric images and spectral energy distributions of the source are influenced by the hydrogen/helium content of the accreting matter. We aim to identify general trends rather than make quantitatively precise predictions, since it is not possible to fully explore the parameter space of accretion models. If the ion-to-electron temperature ratio is fixed, then increasing the helium fraction increases the gas temperature; to match the observational flux density constraints, the number density of electrons and magnetic field strengths must therefore decrease. In our numerical simulations, emission shifts from regions of low to high plasma beta -- both altering the morphology of the image and decreasing the variability of the light curve -- especially in strongly magnetized models with emission close to the midplane. In polarized images, we find that the model gas composition influences the degree to which linear polarization is (de)scrambled and therefore affects estimates for the resolved linear polarization fraction. We also find that the spectra of helium-composition flows peak at higher frequencies and exhibit higher luminosities. We conclude that gas composition may play an important role in predictive models for black hole accretion.